ANTI-MONEY LAUNDERING IN BITCOIN USING MACHINE LEARNING

*Amala Peter, *Karthika PV, *Maya Manohar K, *Parvathi Sankar, **Anuraj Mohan *UG Scholar, **Assistant Professor, Department of Computer Science and Engineering NSS College of Engineering, Palakkad

Anti-Money Laundering in Bitcoin

- Existing systems prove inefficient in tackling the issue of money laundering Bitcoin.
- The pseudonymity of Bitcoin is an advantage for criminals but the public availability of data is a key advantage for the investigators.

Objective

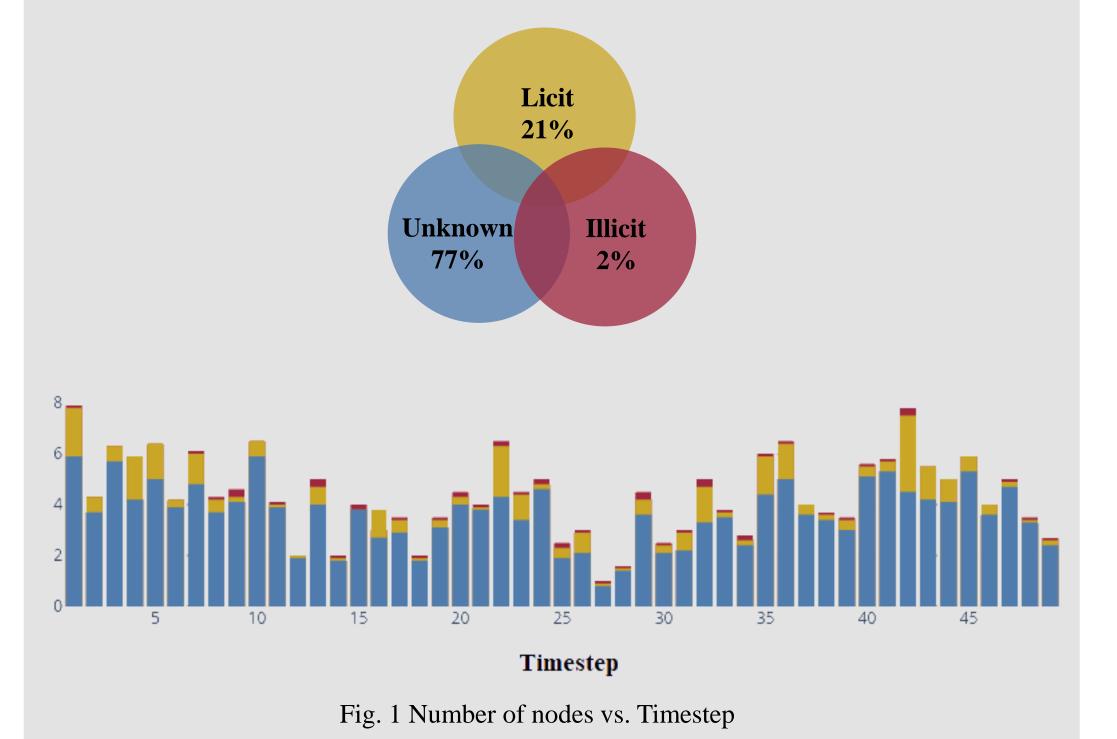
- Our work aims to exploit the publicly available data to develop useful insights that might help in curbing illegal activities.
- In this work, we experiment with various emerging methods that leverage graph information to model the problem and combine the potentialities of these methods to build a better performing system.
- We also aim to further improve our system using Knowledge Distillation (KD)

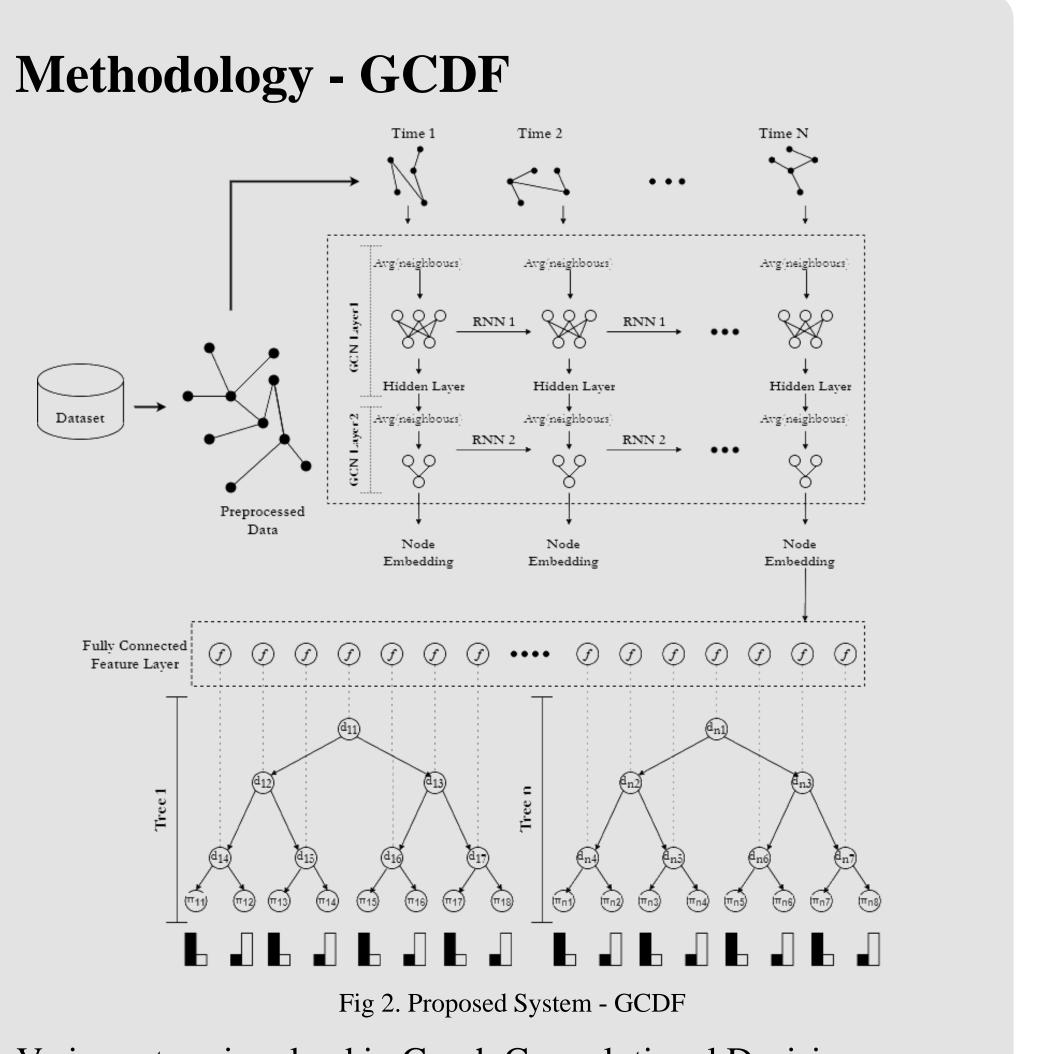
Problem Statement

To design an efficient system to classify the unknown transactions as licit or illicit in the Elliptic dataset to tackle the issue of money laundering in Bitcoin.

Elliptic Dataset

- 2,03,769 transactions/graph nodes and 2,34,355 edges representing the Bitcoin flow.
- 94 local features and 72 aggregate features.

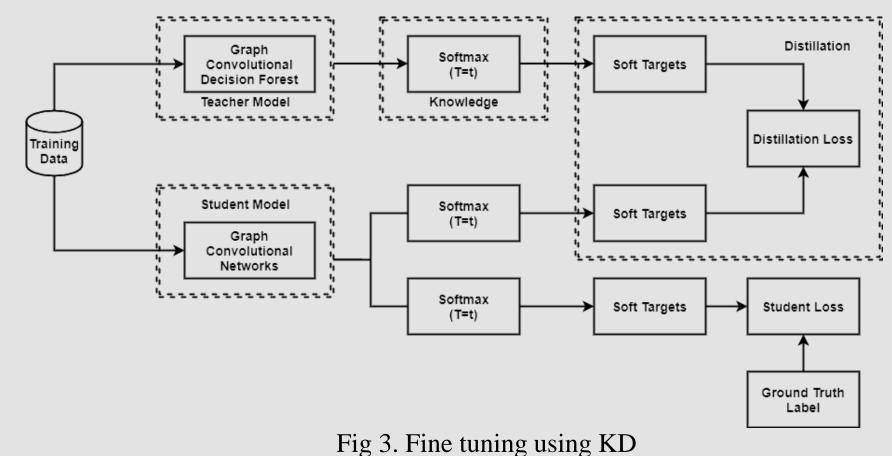




Various steps involved in Graph Convolutional Decision Forest (GCDF) :

- Pre-process the dataset
- Feed each timestep to EvolveGCN module
- Feed the node embeddings obtained from EvolveGCN to
- Deep Neural Decision Forest (DNDF) Module
- Obtain the final prediction

Fine Tuning using KD



Various steps involved in fine tuning :

- Train GCDF as the teacher model and obtain the distillation loss
- Train GCN as the student model using the distillation loss
- Obtain final predictions from the student model

Tools

- Python
- NumPy
- Sklearn
- PyTorch

Evaluation Measures

- Precision
- Recall
- F1-Score
- Micro Average F1-Score

Results

Perfomance Comparison		Micro Avg F1		
r er tomance Comparison	Precision	Recall	F1	MICIO Avg F1
Logistic Regression (AF + NE)	0.457	0.651	0.537	0.9297
Random Forest (AF + NE)	0.984	0.647	0.781	0.9772
MLP(AF + NE)	0.784	0.542	0.641	0.9619
Graph Convolutional Network	0.8674	0.4774	0.6158	0.9613
GraphSAGE	0.8534	0.8385	0.8939	0.8278
EvolveGCN	0.998	0.8663	0.9249	0.8663
GCDF	0.9953	0.8663	0.9251	0.8663

Table. 1 GCDF vs. Other Methods; AF – All Features, NE – Node Embeddings

Methods		Miano ava E1		
wienious	F1 score	Precision	Recall	Micro-avg F1
GCDF (Without KD)	0.9251	0.9953	0.8663	0.8663
GCDF (With KD) - T	0.9251	0.9953	0.8663	0.8663
GCDF (With KD) - S	0.9525	0.9936	0.9166	0.9191

Table. 2 Effect of KD on GCDF

	Teacher				Student			
Methods	F1 Score	Precision	Recall	Micro- avg F1	F1 Score	Precisi on	Recall	Micro- avg F1
GCN	0.444	0.305	0.406	0.9946	0.8175	0.7828	0.8751	0.708
EvolveGCN	0.9251	0.9931	0.8663	0.8663	0.9252	0.9999	0.8666	0.8666
GCDF	0.9251	0.9953	0.8663	0.8663	0.9525	0.9936	0.9166	0.9191

Table. 3 Other Methods in KD

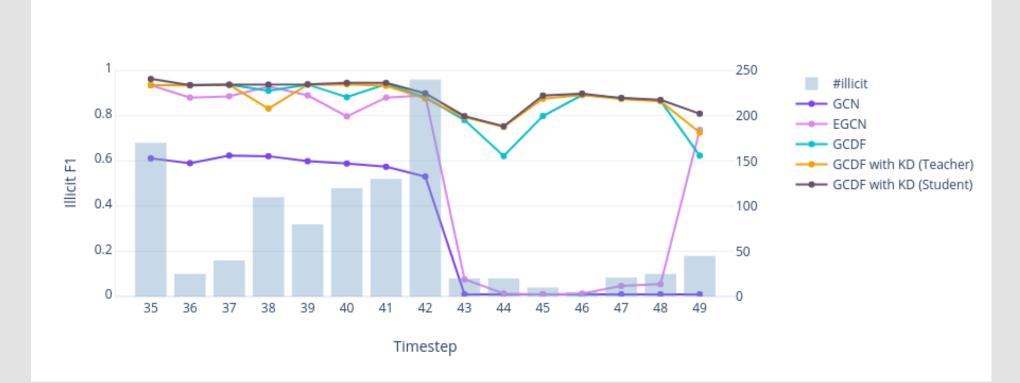
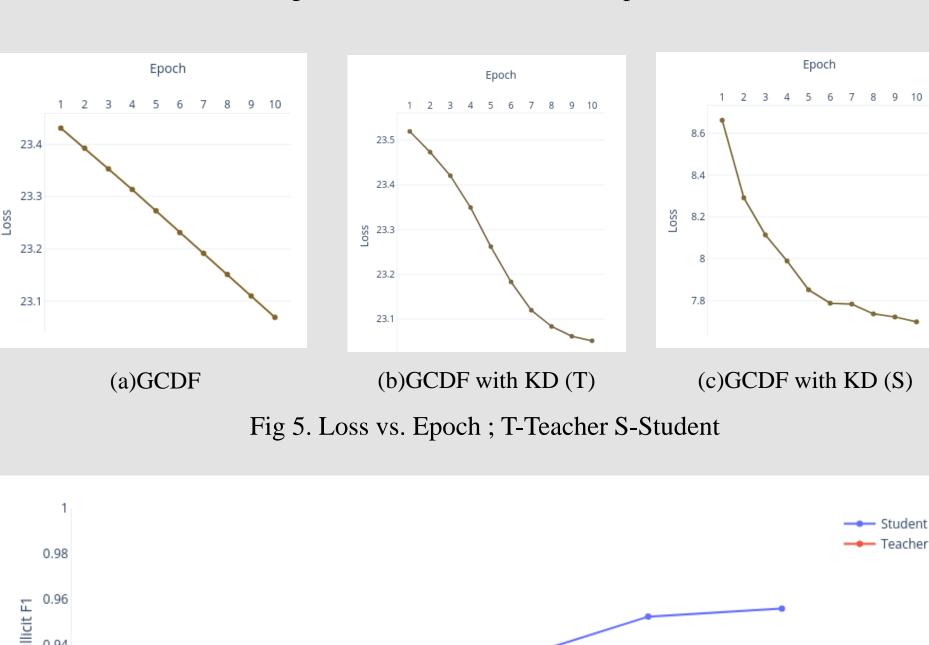


Fig 4. Illicit F1 results over timespan



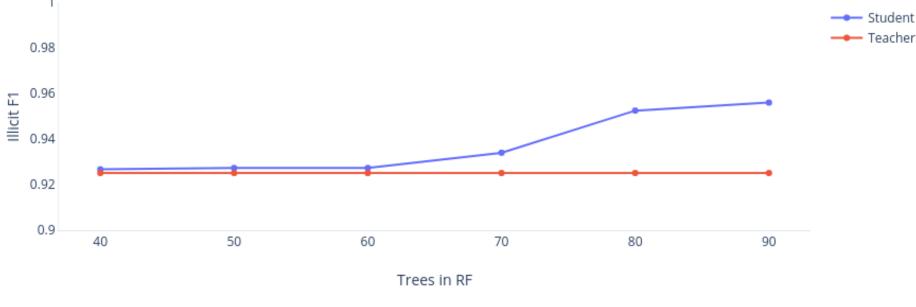


Fig 6. Illicit F1 vs. Tree size in DNDF

G	•
a	
8	•
Sa	
ez	
_	

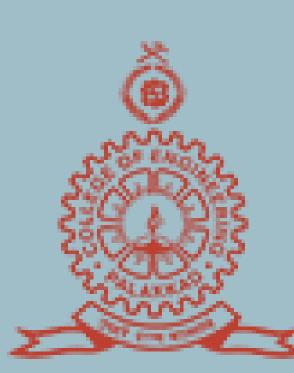
- Loss incurred while training student convincingly reduced with the introduction of KD
- There was an observable performance boost in the student model as compared to the teacher model.

Conclusion information

•	A
F	
•	Т
	th

	th
•	E
	no
	ac
•	0
	ot
	te

- -	
Bel	11
mo	n
cor	١V
[2]	F
Т.,	K
V1S	10
	 [1] Bel mo cor [2] T., 202 net Cor [3] 201 IEF 147 [4] Dis Pro Vis



Inferences

- GCDF performs best with a 70:30 temporal split of training nd test data respectively.
- 0 trees of depth 8 each in DNDF was able to give atisfactory results both in terms of performance and xecution time.

- Out of the benchmark methods, Random Forest gives the best result. But this does not incorporate any graph
- Our proposed system is implemented as a combination of Random Forests and graph information.
- With the notion of appending dynamicity to the model, the dynamic method of EvolveGCN was used by replacing GCN which is static.
- Additionally the application of KD gave finer results

ture Works

The decision trees may be inaccurate comparatively and neir instability may lead to large structural changes. Elliptic dataset has the main limitation of having a new ode set for each new graph snapshot; this needs to be ddressed while considering a dynamic setting. Our future work will be with the intention to explore any ther publicly available dataset and attempt novel dynamic echniques on those.

References

- Weber, M., Domeniconi, G., Chen, J., Weidele, D.K.I., lei, C., Robinson, T. and Leiserson, C.E., 2019. Antiney laundering in bitcoin: Experimenting with graph volutional networks for financial forensics.
- Pareja, A., Domeniconi, G., Chen, J., Ma, T., Suzumura, Kanezashi, H., Kaler, T., Schardl, T. and Leiserson, C.,), April. Evolvegcn: Evolving graph convolutional works for dynamic graphs. In Proceedings of the AAAI ference on Artificial Intelligence
- Kontschieder, P., Fiterau, M., Criminisi, A. and Bulo, S.R., 5. Deep neural decision forests. In Proceedings of the EE international conference on computer vision (pp. 1467-
- Yang, Y., Qiu, J., Song, M., Tao, D. and Wang, X., 2020. tilling knowledge from graph convolutional networks. In ceedings of the IEEE/CVF Conference on Computer ion and Pattern Recognition (pp. 7074-7083).